DMLS/SLM
Both SLM and DMLS technologies work similarly to SLS, but they use fine metal powder as the initial material instead of polymer granules.
DMLS does not melt the powder, but heats it up to a temperature close to melting point where molecular bonds are created. This technology is used for additive manufacturing from alloys.
SLM uses a high-performance laser to completely melt the material and thus creates a homogeneous product. SLM works with pure metals.
Why is DMLS/SLM unique?
Thanks to printing space in an inert atmosphere with active production monitoring, it is possible to achieve high precision. The products achieve a theoretical density of virtually 100%, which means that they have similar properties as machined parts, cast parts or MIM. Processing of atypical metals and their alloys which are not readily available or easily processable by CNC technologies is a big advantage.
Work with metals and alloys without shape and technological limitations.
- Use of atypical metals and their alloys
- Complex shape production with minimum waste material
- Mechanical properties similar to machined parts
- Lightened and topologically optimised products
- Parts can be further worked or welded
When is DMLS/SLM the most suitable?
- Fully functional prototypes
- Spare parts
- Parts for aviation and automotive industry
- Injection moulds and tools with internal conformal cooling
- Specialised coolers and heat exchangers
- Biocompatible medicine products
Technical parameters
Parameter | Value |
---|---|
Avarage lead-time | Mimimum 5 to 8 working days, depending on the size and number of components and amount of finishing works |
Print accuracy | ±0,1 mm |
Layer thickness | Randing from 10 to 100 micrometers |
Minimum wall thickness | 0,4 mm |
Print volume | 250 x 250 x 200 mm for materials stainless steel 316L and AlSi10Mg Ø 100 x 100 mm for materials stainless steel 316L, AlSi10Mg, Inconel 718 a Ti64 degree 23 |
Surface quality | Parts after printing have gently rough surface from the top side and rough surface from the bottom side of the part. Support marks have to be manually removed. |
Materials
Hard-to-machine metals and alloys with unique properties can be now manufactured easily thanks to additive technologies.
Stainless steel 316L – low-carbon alloy steel used as a standard, the second most used stainless steel. It is used inter alia in healthcare (surgical steel) or in food processing industry. It is sufficiently strong, hard and anti-corrosive. Download datasheet
AlSi10Mg – an aluminium alloy combining high strength and extraordinary thermal properties with low weight and possibility of further machining. These properties make the alloy widely used in automotive and aviation industry and in automation. Its specific applications include casing, parts of engines, production tools and moulds. Download datasheet
Inconel 718 – an anti-oxidant and anti-corrosive material suitable for extreme conditions and exposure to high pressure and temperatures. When the material is heated to a certain temperature, it creates a thick and consistent anti-oxidant surface layer which increases the surface protection of the material. Download datasheet
Ti64 grade 23 – has high toughness and strength in air and in salt water. The strength is stable with an extremely long lifespan. It can be used in applications which require high fatigue strength and toughness. It is widely used primarily in aviation and construction industry as well as in medicine for the production of implants. Download datasheet
Measured Parameter | 316L | Inconel 718 | AlSi10Mg | Ti6Al4V Degree 23 |
---|---|---|---|---|
Ultimate tensile strength (as built) [MPa] | 650 ± 50 | 950 ± 50 | 410 | 1140 |
Yield strength (Rp0,2%) [MPa] | 550 ± 50 | 630 ± 50 | 240 | 1050 |
Elogation at break [%] | 45 | 15 ± 2 | 5 ± 2 | 8 ± 2 |
Young´s Modulus [GPa] | 170 | 170 ± 20 | 70 ± 5 | 110 ± 5 |
Hardness | – | 30 HRC | 125 HB | 37 HRC |
Conductivity (20°C) [W/m*K] | 16,2 | 11 | 145 | 6,8 |
Specific head capacity (20°C) [J/kg*K] | 500 | 450 | 900 | 580 |
Melting point [°C] | 1380 | 1280 | 560 | 1650 |